Monoterpene cyclases. Stereoelectronic requirements for substrate binding and ionization.

نویسندگان

  • C J Wheeler
  • R Croteau
چکیده

Enzymes from Salvia officinalis, capable of catalyzing the electrophilic isomerization and subsequent cyclization of geranyl pyrophosphate (3,8-dimethylocta-2E,6-dienyl pyrophosphate) to the monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate, were examined with a series of substrate analogs modified in carbon chain length and in the geometric and electronic character of the C2-C3 and C6-C7 olefinic domains. Inhibition studies with these monoterpene cyclases indicated that the pyrophosphate ester function was the principal determinant of substrate recognition and that the C2-C3 olefin was recognized largely on the basis of geometry, whereas the primary basis of interaction with the C6-C7 olefin was electronic. A related group of allylic pyrophosphates was tested for the ability to undergo enzyme-catalyzed ionization to afford olefinic and/or alcoholic products. From the relative reaction rates it was deduced that the alignment of the allylic pi-system with the C1-OP bond was essential for ionization of the substrate and that specific interaction with the distal C6-C7 isopropylidene function served not only to optimize orbital alignment but also to exclude water from the active site, and thus determine the partitioning of cationic intermediates into olefins or alcohols. From the combination of results, the interrelationships of substrate functional groups within the active site could be approximated and the topology of geranyl pyrophosphate binding to the cyclase thereby formulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism.

The reactions of papain (EC 3.4.22.2) with substrate-derived diazomethyl ketones reported by Leary, Larsen, Watanabe & Shaw [Biochemistry (1977) 16, 5857--5861] are unusual in that (i) these reagents fail to react with low-molecular-weight thiols and (ii) the rate of reaction with the papain thiol group does not decrease to near-zero values across a pKa of 4 as the pH is decreased. Existing dat...

متن کامل

Predicting Protein Binding of Drugs Using Abraham Parameters: Effect of Ionization

Background and purpose: Protein binding (PB) is an important pharmacokinetic parameter in drug discovery and development. In past years Abraham parameters were used to predict some physicochemical and pharmacokinetic properties of drugs. But in these cases, the ionization of drugs in blood pH (7.4) was ignored. Recently, Abraham parameters of chemical compounds in ionized form are proposed. Als...

متن کامل

A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen.

Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estr...

متن کامل

Crystal structure of the guanylyl cyclase Cya2.

Cyclic GMP (cGMP) is an important second messenger in eukaryotes. It is formed by guanylyl cyclases (GCs), members of the nucleotidyl cyclases class III, which also comprises adenylyl cyclases (ACs) from most organisms. To date, no structures of eukaryotic GCs are available, and all bacterial class III proteins were found to be ACs. Here we describe the biochemical and structural characterizati...

متن کامل

OPP GPP a - Pinene p - Pinene 3 - Carene p - Phellandrene Limonene I , - ' lPiee - inn

Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 17  شماره 

صفحات  -

تاریخ انتشار 1987